Методика изучения прямой и обратной пропорциональной зависимости

Введение понятий прямой и обратной пропорциональной зависимости является важным шагом на пути к введению понятия функциональной зависимости и в дальнейшем к изучению линейной и обратной функций. Используя на практике индуктивный подход и знания о пропорции, полученные учениками, преподаватель на нескольких примерах может подвести учеников к пониманию понятий прямой и обратной пропорциональной зависимости.

Например:

«Члены пропорции обладают свойством, которое называют основным свойством пропорции. Во всякой пропорции произведение крайних членов равно произведению средних членов, то есть если a

/b=c/d

, то a · d = b · c . Это свойство применяется при нахождении неизвестного члена пропорции.

Пусть a/x = c/d , то x = a · d/c .

Посмотрите, как можно использовать знания математики в русском языке

!

Именительный падеж - кто? что?Родительный падеж - кого? чего?Дательный падеж - кому? X ?

Недостающий вопрос дательного падежа - чему?

В окружающем нас мире большое множество пропорций или отношений. Они делятся на две большие группы:

прямо

пропорциональные и обратно

пропорциональные.

Прямо пропорциональные :

1. Длина пути, пройденная равномерно движущимся телом, и время, затраченное на этот путь.2. Длина окружности и ее радиус.3. Длина сторон прямоугольника и его периметр (площадь).

Обратно пропорциональные :

1. Радиус колеса и число совершаемых им оборотов на определенном отрезке пути.2. Скорость движения и время в пути.

Пропорциональность

- такая зависимость между величинами, при которой увеличение одной из них влечет за собой изменение во столько же раз другой величины.

Прямая и обратная пропорциональные зависимости выражаются формулами: y = a · x и y = a/x , (x отличен от нуля), где x и y - переменные величины, а - коэффициент пропорциональности, который и показывает, во сколько раз происходят изменения. а - действительное число отличное от нуля. Эти зависимости можно изобразить графически. »

В качестве закрепления понятий прямой и обратной пропорциональной зависимости преподаватель может дать несколько заданий:

1) Определить, является ли прямой пропорциональной, обратной пропорциональной или не является пропорциональной зависимость между величинами:

а)

путем, пройденным автомашиной с постоянной скоростью, и временем ее движения;

б) скоростью движения и временем, если длина пути 120 км;

в) количеством машин и их грузоподъемностью;

г) стоимостью товара, купленной по одной цене, и его количеством;

д) объемом прямоугольного параллелепипеда и высотой, если площадь его основания 15 дм2 ;

е) числом рабочих, выполняющих с одинаковой производительностью труда некоторую работу и временем выполнения работы;

ж) площадью квадрата и длиной его стороны;

з) ростом ребенка и его возрастом.

2) Задача на прямо пропорциональную зависимость:

Расстояние между городами А

и В

на карте равно 5,6 см, а на местности 420 км.

Какое расстояние между городами С

и Д

на местности, если на этой же карте расстояние между ними 3,6 см?

3) Задача на обратную пропорциональную зависимость:

28 рабочих могут выполнить строительные работы за 17 дней.

Сколько нужно рабочих, чтобы выполнит те же работы за 14 дней, если производительность труда останется неизменной?

Перейти на страницу: 1 2

Учащимся о самообразовании

Что такое самообразование? «Самообразование — это образование, приобретаемое вне учебных заведений, путем самостоятельной работы». За годы Советской власти это определение значительно расширилось и обогатилось. >>>

Места обучения детей с проблемами в развитии

В своем развитии каждый человек проходит ряд этапов, важнейшим из которых является социализация, отвечающая за становление человека как личности. Современная трактовка личности опирается на ... >>>

Создание ситуации успеха в учебной деятельности школьников

Ученье– свет, дающий человеку уверенность в своих действиях и поступках. Приобрести эту уверенность помогают образовательные учреждения разного типа, одним из которых является школа. >>>