Пути и условия организации эвристического обучения в школе

Мы считаем, что развитие творческого мышления у учащихся в процессе изучения ими математики является одной из актуальных задач, стоящих перед преподавателями математики в современной школе. Основным средством такого воспитания и развития математических способностей учащихся являются задачи. Не случайно известный современный математик и методист Д. Пойа пишет: «Что значит владение математикой? Это есть умение решать задачи, причем не только стандартные, но и требующие известной независимости мышления, здравого смысла, оригинальности, изобретательности».

При обучении математике на решение задач отводиться бóльшая часть учебного времени. Отсюда напрашивается вывод, что учебное время, отводимое на решение задач в школе, используется неэффективно, а это отрицательно сказывается на качестве обучения математике в целом.

Одна из главных причин затруднений учащихся, испытываемых ими при решении задач, заключается в том, что математические задачи, содержащиеся в основных разделах школьных учебников, как правило, ограничены одной темой. Их решение требует от учащихся знаний, умений и навыков по какому-нибудь одному вопросу программного материала и не предусматривает широких связей между различными разделами школьного курса математики. Роль и значение таких задач исчерпываются в течении того непродолжительного периода, который отводиться на изучение (повторение) того или иного вопроса программы. Функция таких задач чаще всего сводиться к иллюстрации изучаемого теоретического материала, к разъяснению его смысла. Поэтому учащимся нетрудно найти метод решения данной задачи. Этот метод иногда подсказывается названием раздела учебника или задачника, темой, изучаемой на уроке, указаниями учителя и т. д. Самостоятельный поиск метода решения учеником здесь минимален. При решении задач на повторение, требующих знания нескольких тем, у учащихся, как правило, возникают определенные трудности.

К сожалению, в практике обучения математике решение задач чаще всего рассматривается лишь как средство сознательного усвоения школьниками программного материала. И даже задачи повышенной трудности специальных сборников, предназначенных для внеклассной работы, в основном имеют целью закрепление умений и навыков учащихся в решении стандартных задач, задач определенного типа. А между тем функции задач очень разнообразны: обучающие, развивающие, воспитывающие, контролирующие.[8; 25-47]

Каждая предлагаемая для решения учащимся задача может служить многим конкретным целям обучения. И все же главная цель задач — развить творческое мышление учащихся, заинтересовать их математикой, привести к «открытию» математических фактов.

Достичь этой цели с помощью одних стандартных задач невозможно, хотя стандартные задачи, безусловно, полезны и необходимы, если они даны вовремя и в нужном количестве. Мы считаем, что следует избегать большого числа стандартных задач как на уроке, так и во внеклассной работе, так как в этом случае сильные ученики могут потерять интерес к математике.

Ознакомление учащихся лишь со специальными способами решения отдельных типов задач создают, на наш взгляд, реальную опасность того, что учащиеся ограничатся усвоением одних шаблонных приемов и не приобретут умения самостоятельно решать незнакомые задачи («Мы такие задачи не решали»,— часто заявляют учащиеся, встретившись с задачей незнакомого типа).

В системе задач школьного курса математики, безусловно, необходимы задачи, направленные на отработку того или иного математического навыка, задачи иллюстративного характера, тренировочные упражнения, выполняемые по образцу. Но не менее необходимы задачи, направленные на воспитание у учащихся устойчивого интереса к изучению математики, творческого отношения к учебной деятельности математического характера. Необходимы специальные упражнения для обучения школьников способам самостоятельной деятельности, общим приемам решения задач, для овладения ими методами научного познания реальной действительности и приемам продуктивной умственной деятельности, которыми пользуются ученые-математики, решая ту или иную задачу.

Осуществляя целенаправленное обучение школьников решению задач, с помощью специально подобранных упражнений, можно учить их наблюдать, пользоваться аналогией, индукцией, сравнениями, и делать соответствующие выводы. Необходимо, как мы считаем, прививать учащимся прочные навыки творческого мышления.

В школьных учебниках математики (и не только ныне действующих) мало задач, с помощью которых можно показать учащимся роль наблюдения, аналогии, индукции, эксперимента.

Мы исходим из того, что несмотря на ошибочные гипотезы, которые можно получить в результате наблюдений и неполной индукции, учитель должен использовать все предоставляемые ему программой и учебниками (в том числе и ранее действующими, и пробными, экспериментальными) возможности, чтобы развить у учащихся навыки творческого мышления. С этой целью, например, можно предложить учащимся следующую задачу: «Может ли: а) сумма пяти последовательных натуральных чисел быть простым числом; б) сумма квадратов пяти последовательных натуральных чисел быть простым числом?» (18, №1168).

Перейти на страницу: 1 2 3

Учащимся о самообразовании

Что такое самообразование? «Самообразование — это образование, приобретаемое вне учебных заведений, путем самостоятельной работы». За годы Советской власти это определение значительно расширилось и обогатилось. >>>

Места обучения детей с проблемами в развитии

В своем развитии каждый человек проходит ряд этапов, важнейшим из которых является социализация, отвечающая за становление человека как личности. Современная трактовка личности опирается на ... >>>

Создание ситуации успеха в учебной деятельности школьников

Ученье– свет, дающий человеку уверенность в своих действиях и поступках. Приобрести эту уверенность помогают образовательные учреждения разного типа, одним из которых является школа. >>>