Методика изучения линейной, квадратной и кубической функции в VII классе.
Большинство изучаемых в школьной математике функций образует классы, обладающие общностью аналитического способа задания функции из него, сходными особенностями графиков, областей применения. Освоение индивидуально заданной функции происходит в сопоставлении черт, специфических для неё, с общим представлением о функции непосредственно, без выделения промежуточных звеньев. Однако длительность периода независимого рассмотрения каждой функции незначительна; в курсе алгебры вслед за введением понятия о функции сразу рассматривается первый класс – линейные функции. Для функций, входящих в класс, изучение происходит по более сложной схеме, поскольку в нём выделяются новые аспекты: изучение данной функции как члена класса и изучение свойств всего класса на примере «типичной» функции этого класса.
Типичный и одновременно важнейший для математики класс функций — линейные функции, которые мы рассмотрим с точки зрения изучения характерных для этого класса свойств и представлений, формируемых в курсе алгебры.
Первоначальное представление о линейной функции выделяется из рассмотрения задачи, обычно связанной с равномерным прямолинейным движением, а также при построении графика некоторой линейной функции. Рассмотрим второй из этих источников. Основная мысль, которую мы попытаемся обосновать, состоит в том, что рассмотрение графика отдельно взятой линейной функции не может привести к формированию представлений об основных свойствах графиков всех линейных функций.
Для этого рассмотрим два наиболее широко распространенных в начале изучения темы приема построения графиков линейной функции.
Первый способ. Использование «загущения» точек на графике. Предполагается следующая последовательность действий по этому приему:
а) нанесение нескольких точек;
б) наблюдение — все построенные точки расположены на одной прямой; проведение этой прямой;
в) проверка: берем произвольное значение аргумента и вычисляем по нему значение функции; наносим точку на координатную плоскость — она принадлежит построенной прямой. Отсюда делается вывод о графике данной линейной функции.
Этот способ безусловно может привести к пониманию того, что график и любой линейной функции — прямая, т. е. к выделению некоторого общего свойства класса линейных функций. Однако последовательное проведение приема требует большого времени и не может быть проделано более нескольких раз. Поэтому общее свойство будет при этом формироваться на основе изолированных примеров.
Второй способ. По двум точкам. Этот способ уже предполагает знание соответствующего свойства графиков линейных функций. Выявления новых свойств здесь не происходит, поскольку внимание, как и при первом способе, сосредоточивается на конкретной функции из класса. Заметим, что в обучении происходит последовательная смена этих способов: когда общее свойство графиков усвоено (при рассмотрении первого способа), начинают применять второй — он экономнее и обоснован геометрически, поскольку через две точки проходит одна и только одна прямая.
Для того чтобы изучить класс линейных функций в совокупности его общих свойств, необходимо поставить новую для учащихся познавательную задачу:
исследовать класс функций у=
k
х+
b
в зависимости от параметров, установить геометрический смысл параметров. Эта задача возникает сразу же вслед за введением понятия функции. Наиболее естественный прием, который может быть применен, состоит в рассмотрении одновременно нескольких функций, у которых один из параметров изменяется, а другой остается постоянным. Простейшая система, реализующая этот прием, состоит из четырех заданий с их последующим анализом и установлением связей между ними.
Пример 5. Постройте графики функций:
у=0,5x; y=0,5x+0,5; y=1,5x; у=1,5x+0,5.