Общие вопросы методики изучения элементов наглядной геометрии.

Учитель не пойдет по такому пути, если будет и учитывать, что в процессе определения понятия каждый раз одно понятие (например, «квадрат») определяется через другое, более широкое («прямоугольник»), которое в свою очередь так же может быть определено через еще более широкое понятие («параллелограмм», «четырехугольник», «многоугольник»). Такую цепь определений нельзя продолжить бесконечно. В конце концов, мы приходим к понятиям, наиболее широким и общим, для которых невозможно указать ближайший род. Такие понятия называют основными (первичными и неопределенными).

Учитель должен хорошо представлять, что наличие основных (неопределяемых) понятий, как в науке геометрии, так и в школьном курсе геометрии неизбежно. Поэтому, например, он совершит грубую математическую ошибку, если будет ставить такие вопросы: «Что называется плоскостью?», «Что называется прямой линией?», «Что называется точкой?» и т.п., так как эти понятия основные, они не определяются через указание рода и видового отличия.

Нужно иметь в виду, что в школьном курсе геометрии по мере овладения учащимися геометрическими представлениями, от класса к классу система основных понятий меняется. В младших классах эта система более обширна. Например, в 1-3 классах такие понятия как «отрезок», «многоугольник», «угол» и т.п., являются неопределенными. Но уже в 4 классе они определяются. Из этого следует, что учащимся начальных классов не имеет смысла задавать вопрос: «Что называется (что такое) отрезком? Что называется многоугольником? Что называется углом?» и т.п. Так как понятия «отрезок», «многоугольник», «угол» являются здесь неопределенными, но уже можно ставить вопрос: «Что называется треугольником (четырехугольником, пятиугольником)?» Дети могут отвечать на этот вопрос примерно так: «Треугольник – это многоугольник, у которого три угла (вершины, стороны)». Здесь можно давать несколько избыточное определение прямоугольника как четырехугольника, у которого все углы прямые.

Попытки ранней формализации при ознакомлении младших школьников с геометрическими фигурами приводят к завышению программных требований, к недостаточному, а иногда и неверному усвоению материала.

Так, например, в классах, где учителя злоупотребляли «теоретическим» подходом к изучению фигур, многие учащиеся не смогли, например, указать правильно все фигуры, изображенные на рисунке.

2 3 4

6 7 8 9

Перейти на страницу: 1 2 3 4 5 6

Учащимся о самообразовании

Что такое самообразование? «Самообразование — это образование, приобретаемое вне учебных заведений, путем самостоятельной работы». За годы Советской власти это определение значительно расширилось и обогатилось. >>>

Места обучения детей с проблемами в развитии

В своем развитии каждый человек проходит ряд этапов, важнейшим из которых является социализация, отвечающая за становление человека как личности. Современная трактовка личности опирается на ... >>>

Создание ситуации успеха в учебной деятельности школьников

Ученье– свет, дающий человеку уверенность в своих действиях и поступках. Приобрести эту уверенность помогают образовательные учреждения разного типа, одним из которых является школа. >>>