Общие вопросы методики изучения элементов наглядной геометрии.

5

7

11

12

10 13 14

12

Они путали отрезок (2) и прямую (14), четырехугольник (8) и замкнутую ломаную линию (9).

Как правило, более высокого уровня усвоения достигают те учителя, которые, понимая самостоятельную значимость геометрических знаний, стремятся осуществить связь изучения геометрического материала с другим материалом начального курса математики. В основе этой связи лежит возможность установления отношений между числом и фигурой, свойствами чисел и свойствами фигур. Это позволяет использовать фигуры при формировании понятия числа, свойства чисел, операций над ними и наоборот использовать числа для изучения свойств геометрических образов и их отношений.

В 1 классе фигуры следует применять наряду с другими материальными вещами как объекты для перечисления. Несколько позже такими объектами должны стать элементы фигур, например вершины, стороны, углы многоугольников. Учащиеся постепенно знакомятся с измерением отрезков. Это устанавливается прямая связь между отрезками (точками) и числами.

Геометрические фигуры используются при ознакомлении учащихся с долями. В указанных выше случаях открывается больше возможностей органически связать изучение геометрических объектов с арифметическим материалом, включенным в курс математики для 1-3 классов.

Уже в 1-3 классах выполняются простейшие классификации углов (прямые и непрямые), многоугольников (по числу углов) и т.д. Изучение родовых и видовых понятий готовит детей к пониманию определений, построенных на указании рода и видовых отличий.

Это дает, например, возможность построить методику ознакомление с прямоугольниками таким образом, что в дальнейшем ученики усваивают, что любой квадрат есть прямоугольник.

Использование упражнений, в которых дети отмечают (выделяют) точки, принадлежащие или не принадлежащие фигуре или нескольким фигурам, помогает в дальнейшем трактовать геометрическую фигуру как множество точек. А это позволяет более осознанно выполнять операции деления фигуры на части или получение фигуры из других (складывание), т.е. выполнять по существу операции объединения, пересечения, добавления над точечными множествами.

Перейти на страницу: 1 2 3 4 5 6

Учащимся о самообразовании

Что такое самообразование? «Самообразование — это образование, приобретаемое вне учебных заведений, путем самостоятельной работы». За годы Советской власти это определение значительно расширилось и обогатилось. >>>

Места обучения детей с проблемами в развитии

В своем развитии каждый человек проходит ряд этапов, важнейшим из которых является социализация, отвечающая за становление человека как личности. Современная трактовка личности опирается на ... >>>

Создание ситуации успеха в учебной деятельности школьников

Ученье– свет, дающий человеку уверенность в своих действиях и поступках. Приобрести эту уверенность помогают образовательные учреждения разного типа, одним из которых является школа. >>>