Нестандартные задачи.
2. Олимпиада должна быть массовой, с тем, чтобы каждый школьник мог принять в ней участие. Причем надо стремиться к обеспечению равных возможностей для всех детей, независимо от того, где они учатся: в городе, районном центре или в малой деревне.
3. Олимпиада должна носить многоступенчатый характер - от масштаба отдельного класса до объединения нескольких территорий (в начальных классах таким объединением может быть несколько районов).
Такое построение олимпиады позволяет участвовать в ней всем школьникам. При этом выигрывают не только победители, но и участники.
Необходимо провести подготовительные мероприятия и всей олимпиады в целом, и отдельных ее этапов.
Важно условие эффективности подготовки — это желание учителей работать совместно с организаторами олимпиады. Нужно разумное сочетание соревнования и мер поощрения как детей, так и учителей. Организационные мероприятия олимпиады должны дополняться инициативой учителя.
Олимпиада в начальный период обучения занимает важное место в развитии детей. Именно в это время происходят первые самостоятельные открытия ребенка. Пусть они даже небольшие и как будто незначительные, но в них - ростки будущего интереса к науке. Реализованные возможности действуют на ребенка развивающе, стимулируют интерес не только к математике, но и к другим наукам.
Олимпиада, фактически, проходит в течении года. Она проходит в несколько этапов:
1) заочный (подготовительный) тур;
2) школьный тур;
3) районный тур;
4) межрайонный тур.
5) краевой.
5) меж краевой.
6) федеральный.
7) соревнования всероссийского уровня.
Основным материалом для олимпиад являются задачи.
- Разумеется, задачи не должны дублировать материал учебника, а во многих случаях они носят нестандартный характер и иногда могут соответствовать принципу опережающего обучения. Главное, чтобы ребенок смог проявить смекалку.
- Эффектны простые задачи, требующие неожиданного поворота мысли.
- Нужны достаточно интересные задачи.
- Иногда можно предложить практические задания или задачи отвлеченного характера, но очень важно, чтобы они увлекли детей, поставили перед ними вопросы, полезные для дальнейшего умственного развития.
- Целесообразно в задачах прибегать к образам из окружающего мира, а иногда к сказочным сюжетам. Не надо пренебрегать и игровыми ситуациями.
Задачи, которые используются на олимпиадах являются, в большинстве своем, нестандартными, это связано именно с тем, чтобы увидеть, как ребенок мыслит, ход мысли, может ли решать логически, а не по заученной схеме. Приведенные выше примеры нестандартных задач, также используются на олимпиадах и не только.
Ниже приведены примеры олимпиадных задач.
Задача 1: В некотором месяце вторников больше чем понедельников и больше чем сред. Какой это мог быть месяц?
Задача 2: За успехи в математике была награждена группа ребят. При этом 14 школьников были отмечены за хорошее выступление на Уральском турнире, 11 – за победу на областной олимпиаде и 13 – за отличную учебу в ЛМШ. Известно, что всего награждено было меньше 20 человек (причем могли награждать и за другие успехи). Оказалось, что три награды не получил никто. А сколько ребят получили по две награды?
Задача 3: В соревнованиях велогонщиков на круговом треке приняли участие Вася, Петя и Коля. Вася каждый круг проезжал на 2 секунды быстрее Пети, а Петя – на три секунды быстрее Коли. Когда Вася закончил дистанцию, Пете осталось проехать один круг, а Коле – два круга. Сколько кругов составляла дистанция?
Задача 4: Число состоит из 36 цифр. Разрешается разбить его на группы из шести цифр и переставить эти группы как-нибудь. Известно, что одна из перестановок в семь раз больше другой. Докажите, что эта большая перестановка делится на 49. Задача 5: По кругу сидят 2001 рыцарей и лжецов. Каждый заявил, что его соседи – лжец и рыцарь, но два рыцаря при этом ошиблись. Сколько среди них лжецов?
Задача 6: Каждая сторона правильного треугольника поделена на 15 равных частей и через точки деления проведены прямые, параллельные сторонам треугольника. В результате этого получили разбиение треугольника на маленькие треугольнички. После этого в каждый из маленьких треугольничков записали + 1 или – 1. Известно, что число в каждом треугольничке равно произведению чисел в тех треугольничках, которые имеют с ним общую сторону. Докажите, что в каждом из маленьких треугольничков, прилегающих к серединам сторон большого треугольника, стоит число + 1.